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We consider the fluid motion induced when an elliptic cylinder performs small- 
amplitude torsional oscillations about an axis parallel to a generator which passes 
through either the centre or a point on the major or minor axis of the ellipse. In 
common with other fluid flows dominated by oscillatory motion, a time-independent, 
or steady streaming flow develops. This steady streaming exhibits several unusual and 
unexpected features, which are confirmed by experiment. 

1. Introduction 
In this paper we are concerned with the flow induced by the small-amplitude, 

torsional oscillations of a cylinder with elliptic cross-section in a viscous fluid that is 
otherwise at rest. The axis of oscillation, parallel to the cylinder generators, is placed 
at either the centre of the ellipse or at a point along its major or minor axis. Particular 
interest is focused upon the acoustic streaming, or time-averaged flow, that is induced 
by such a motion of the cylinder. Several novel, and unexpected, features associated 
with the steady streaming are predicted, and visualized in a simple experiment. 

Steady streaming motions induced by vibrating objects in a fluid otherwise at rest, 
for which a generic term is acoustic streaming, have been observed, and studied, for 
more than a century. Overviews of the subject may be found in Riley (1967), who 
also reviews earlier work, and Lighthill (1978). A prototype problem is the circular 
cylinder that performs translational oscillations perpendicular to its generators. Two 
parameters characterize the flow : the dimensionless amplitude of the oscillation, and 
the so-called streaming Reynolds number which is based upon the magnitude of the 
induced steady streaming velocity. As Lighthill remarks, all worthwhile streaming 
motions are at high values of this Reynolds number, and it is the high-Reynolds- 
number regime with which we are concerned. Riley (1965), Stuart (1966) and Davidson 
and Riley (1972) have all studied the boundary layer on a circular cylinder performing 
translational vibrations. This has a double structure, namely an inner Stokes, or shear- 
wave, layer in which the steady streaming is generated, and an outer steady streaming 
boundary layer driven from the Stokes layer. The outer boundary layers collide to form 
jets along the axis of oscillation. Davidson & Riley also consider the streaming motion 
when an elliptic cylinder performs translational oscillations parallel to either the major 
or minor axis. Again jets are predicted to emerge along the axis of oscillation, and these 
have been observed and measured experimentally by Davidson & Riley. A different 
type of oscillatory motion, namely orbital flow, has the axis of oscillation moving in 
a small circle but with the orientation of the cylinder fixed. Longuet-Higgins (1970) and 
Riley (1971) have considered such orbital motion of a circular cylinder. A steady 
streaming is again induced in the Stokes layer, now with circulation about the cylinder, 
and this matches directly to an outer potential vortex flow. However, for orbital 
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motion of an elliptic cylinder Riley (1978) has shown that a second, outer boundary 
layer is again required before a match with the potential vortex can be satisfactorily 
made. 

In this paper we consider the torsional, or angular, oscillations of an ellipse about 
an axis parallel to its generators, initially at its centre. For the limiting case of a circular 
cylinder there is no steady streaming, and we simply have a viscous shear wave 
propagating radially from the cylinder. For the other limiting case of a finite flat plate, 
vortices of alternate sign will be shed from each edge, and we may expect these to 
propagate as vortex pairs away from the plate on what is essentially the major axis. For 
an elliptic cylinder such a net flow away from it along the direction of the major axis 
would again be anticipated if the oscillation amplitude were sufficiently large to induce 
separation. However, for small-amplitude vibrations, when no flow separation takes 
place, we have the unexpected result that jets issue symmetrically from the cylinder 
surface, following a boundary-layer collision, along the direction of the minor axis. 
The boundary layer at the cylinder surface is again of double-structured type. If the 
axis of oscillation, or pivot, is now moved along the major axis of the ellipse a situation 
arises in which the steady streaming is directed, asymmetrically, along the direction of 
the semi-major axis where the pivot is placed. This is consistent with the asymmetric 
steady streaming analysed by Riley & Watson (1993) for the eccentric oscillations of 
a circular cylinder. As the pivot moves further out on the major axis we eventually 
recover the original situation, with jets forming along the minor axis, for now the 
cylinder is essentially performing translational vibrations along that axis. If the pivot 
is, instead, moved from the centre along the minor axis a quite different, and equally 
unexpected, sequence of events takes place. The jet from the end of the semi-minor axis 
on which the pivot is now placed bifurcates; the other one gradually weakens. As the 
pivot moves further out the bifurcated jets continue to separate, the other to weaken, 
until they lie along the major axis of the ellipse. With the pivot at large distances, this 
is consistent with the ellipse performing translational vibrations along the direction of 
the major axis. 

The relative simplicity of the configuration, together with the unusual and 
unexpected streaming motions predicted, have prompted the construction of an 
experiment. This is described in the last section, and we remark here that our 
observations, by appropriate flow visualization techniques, confirm the unusual steady 
streaming flows we have described above. 

2. Governing equations 
We are concerned with the flow induced by a cylinder, of elliptical cross-section, that 

performs torsional oscillations about an axis, parallel to its generators, with angular 

(2.1) 
velocity 

52 = SZ, cos wt'k. 
In (2.1) t' is time, k the unit vector parallel to a generator, and a,, w are constants. If 
a typical length is d, so that a typical velocity is God, and to is a typical time, where d 
and to are to be chosen, the dimensionless unsteady Navier-Stokes equations may be 
written, in a frame of reference fixed to the cylinder, as 

where 
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In these equations (u, u) are elliptic coordinates, related to rectangular coordinates in 
the ( x , y )  plane by 

(2.4) 
with u 2 0, 0 < u < 2 ~ .  The scale factor h is given by 

(2.5) 
and the stream function $ determines the velocity components in the (u, u)-directions, 

x = 2 e-"ocosh u cos u, y = 2 e-"osinh u sin u, 

h(u, u) = 2 e-"o (sinh' u + sin' u)"', 

respectively, as 

The no-slip condition is to be applied at the cylinder surface which we take as u = u,. 
With this choice we note that if a, b are respectively the semi-major and -minor axes 
of our elliptic cylinder then our typical length d is given by d = +euo/cosh u,, with 
b / a  = tanh u,. As u, + 0, 00 the elliptic cylinder degenerates to either a flat plate or 
circular cylinder. 

In (2.2) the three dimensionless parameters 8, E and R, are defined as 

S = do, E = SZ,/w, R, = S Z t d 2 / W 2  V t , ,  (2.7) 
where v is the kinematic viscosity. Although it appears that three independent 
parameters characterize our flow, the obvious choice of 0-l or for to shows that, 
in fact, there are only two such characterizing parameters. In particular, we note that 
e 4 1 is the situation with which we are most concerned throughout. 

3. Initial flow development 
In this section we consider the initial development of the flow when the oscillatory 

motion is initiated at t = 0, according to (2.1). We are particularly concerned with the 
manner in which the Stokes layer, that is initially formed at the surface of the cylinder, 
develops and breaks down in the high-frequency, high-Reynolds-number limit. This 
breakdown we interpret as a form of separation, or eruption, of fluid from the surface. 
We consider only the case of symmetric flow, when the axis of oscillation passes 
through the centre of the ellipse, since we believe there are no substantially new features 
to be uncovered in the asymmetric cases. 

The obvious choice for the timescale t, is now SZ;' so that, from (2.7), 

S = E-', R, = SZi d2/w2v .  (3.1) 
From (3.1) we note that in (2.2) the quantity Re = R,/e' = SZ,d'/v plays the role of a 
conventional Reynolds number. We are concerned with the case Re 9 1. In that case, 
and with E << 1, the leading term of (2.2), $,(u, u, t) say, satisfies 

a 2 -(V'$,) at = --sin(t/c). € 

The solution of (3.2), with $, = 0 on u = u,, and for which $, - e-'"o (cosh 2u + cos 2u) 
COS(~/E) as u+m, is 

This does not satisfy the condition of no-slip at the surface u = u,. The slip velocity 
V,  is given by 

$, = (cosh 2u - cosh 224, + cos 2v - e-2(u-uo) cos 2u) cos (?I€). (3.3) 

e-"o (sinh 224, + cos 2u) 
(sinh' u, + sin' u)"' cos ( t / E ) ,  
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and this velocity of slip must be corrected through a boundary layer of thickness 
O(Re-'/'), which we now consider. 

= (O,O, - V"). We now 
introduce new variables, denoted by an overbar, that acknowledge the boundary-layer 
scale, as 

where h,(u) = h(u,, u), so that (2.2) becomes 

First note that the vorticity vector C is given by 4 = (O,O, 

$ =  re'"^, = U = Re%,(u) (u - u,) (3 - 5 )  

(3.6a) 

with (3.6b) 

and where (3.6~) 

In deriving (3.6) the additional assumption ERe"' 9 1 has been made. This 
streamfunction-vorticity formulation of the boundary-layer equations has previously 
been exploited by Vasantha & Riley (1988), and Riley & Vasantha (1989). Its 
advantage is associated with the fact that the solution is periodic, period 27t, in v .  The 
numerical scheme we have used is described in detail by those authors, and not 
repeated here. All our calculations have been carried out for an ellipse with b /a  = 0.5, 
which corresponds to u, = 0.549306. In the calculations we have set the edge of the 
boundary layer at U, = 80, with mesh size St = m/50, Su = sc/lOO and 6ii = 0.1. 
Numerical experimentation, and the experience of Vasantha & Riley (1988), shows that 
this mesh provides adequate resolution, and all results we display are accurate to the 
number of significant figures shown. 

It is now well established that the failure of the unsteady boundary-layer equations, 
made manifest by the development of singular behaviour in the solution, heralds the 
onset of breakaway of fluid from the surface. Diverse examples are provided by the 
work of Banks & Zaturska (1979), Van Dommelen & Shen (1980) and Brown & 
Simpson (1982). In all these cases, the solution develops a singularity at a finite time. 
In the present case, for E -4 1, we envisage that the O(E) time-averaged secondary flow 
will result in an accumulation of fluid at some point on the surface of the ellipse from 
which there is an eruption at a finite time. This we suppose by analogy with the 
eruption of fluid from a circular cylinder which performs small-amplitude translational 
vibrations, Vasantha & Riley (1988). Such an eruption we expect, again by analogy, 
will result in jet-like flows, and this possibility is examined further in the next section. 
An obvious measure of the onset of failure, by flow separation or eruption, is the 
viscous displacement velocity defined by 

and we have monitored the maximum value of this, in 0 < u < 2n, in our calculations. 
Vasantha & Riley (1988) found that the singular behaviour of ud as t -+ t,, the eruption 
time, exhibits the behaviour ( t - t t , ) -7 /4,  as in the work of Van Dommelen & Shen 
(1980). The breakdown that we have encountered is also consistent with this behaviour. 

For E 6 1, as already remarked, we expect a situation in which drift velocities of O(E) 
result in an accumulation of fluid at a point from which the flow erupts, as on a circular 
cylinder that performs translational vibrations. However for E 9 1 we may expect 
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E t, #-%I 

lo3 0.54 1.414 

0.2 1.9 0.660 

0.1 21.0 0.408 
0.05 29.0 0.314 

TABLE 1 .  The main features of the solutions 

separation of a more conventional type to occur in the regions of highest curvature. 
For intermediate values these mechanisms will compete. We set out the main features 
of our solutions in table 1. There t,, u, denote the time and location of the breakdown 
of the solution as determined from ( v ~ ) , , , ~ ~  in (3.7). 

We remark that for the largest value of E we have, in fact, taken 6t = 0.0025. There 
are several points to note. For the largest value of E we are essentially considering an 
ellipse set into uniform rotation, with conventional flow separation taking place close 
to maximum curvature. As the amplitude of oscillation E decreases this form of flow 
breakaway gives way to the second type of eruption due to accumulation of fluid as 
discussed. Of course the asymmetric thickening of the boundary layer about the major 
axis, close to maximum curvature, still influences the nature of the solution and in 
particular the point of breakaway. We may conjecture that for E 4 1 this effect 
diminishes, and u, +$I as E +  0. To extend the results of table 1 to smaller values of E 

is not easy. The breakdown time t ,  increases: an estimate by Riley & Vasantha (1989) 
for oscillatory flow at a stagnation point gives t ,  = O ( E - ~ ) ,  as E decreases. And with 
6t = O(E) the computational effort increases by a factor O(E-~) .  Navier-Stokes 
calculations for this case have been carried out by S .  C. R. Dennis (private 
communication). For E = x-' and Re = 0(103) the breakaway points of the flow from 
the cylinder are not, as here, symmetrically placed. However, as t increases, the flow 
in the neighbourhood of the cylinder develops into a quasi-periodic flow, symmetric 
about the minor axis of the ellipse along which jet-like structures emerge. We consider 
this quasi-periodic solution in the next section when E 4 1. 

4. Quasi-periodic flow 
is a natural choice for the timescale to. As a 

consequence, in (2.2) we have 6 = 1. Also note that R, = SZid2 /w  = €Re;  the 
significance of this parameter, assumed to be O( I), will emerge later. In this flow regime 
we are concerned with both the symmetric situation of $3 in which the axis of 
oscillation lies along the centre of the ellipse, and the asymmetric cases when the axis 
lies at some arbitrary point on either the major or minor axis. It proves convenient to 
develop the symmetric case first, in some detail and then outline more briefly the 
necessary modifications for the asymmetric cases. 

For this quasi-periodic flow 

4.1. Symmetric j7ow 

Equation (2.2), with 6 = 1, is to be solved subject to 

@ = a@pu = 0 at u = u0, 

@ - e-2uo (cosh 2u + cos 20) cos t as u +a. 

(4.1 a) 

(4.1 b) 
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As is common with problems of this type we expand the streamfunction as 

In (4.2) we have acknowledged the fact that the solution will not be purely periodic, but 
will have a non-zero time average, by splitting into a time-dependent or unsteady 
(u) part, and a time-independent or steady (s) part. Substituting (4.2) into (2.2) gives, 
at leading order, 

a(V$,) /at  = - 2 sin t. 

The solution which satisfies the first of (4.1 a), and (4.1 b), is 

$, = e-'"o (cosh 2u - cosh 224, + cos 2v - e-2(u-uo) cos 2u) cos t ,  (4.3) 
which is, of course, simply (3.3) on this new timescale. The no-slip condition is violated 
at u = u, where the slip velocity is given, as in (3.4), by 

Where complex notation is adopted, as in (4.4) and below, the real part is to be 
understood. 

To satisfy the no-slip condition an inner boundary layer, the Stokes or shear-wave 
layer, has to be introduced. This is known to have thickness O(V/W)' /~ which leads us 
to the inner variables 

As in the outer region we expand the streamfunction Y as 

ul(p, u , o  = Yo@, u, t )  + e { V'@, u, t )  + Yy@, u)> + W), (4.6) 
where we have again anticipated the presence of a time-independent part at O(E). 
Substituting (4.9,  (4.6) into (2.2) gives, at leading order, 

(4.7 a) 

with !Po = a!P,/ap = 0 at p = 0, (4.7b) 

aYo/appVeit as p ~ ,  

where r is defined by (4.4). The solution of (4.7) is 

(4.74 

Yo = V(u) lo -:( 1 - i) { 1 - e-(l+i)p }] e". (4.8) 
We consider next the terms of O(e) in (4.6). Our particular concern is with the steady 
streaming at O(e), represented by F;) in (4.6). Upon substitution of (4.6), with (4.3,  
into (2.2), and taking a time average, we have at O(c), 

The superscript (s) on the right-hand side of (4.9) again indicates the time-independent 
part which results from time averaging. The solution of (4.9) for which 

yll.) = iIyll.)/ap = 0 at p = 0, (4.10) 
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and for which aP:)/ap is bounded as p+m, is 

(4.11 a) 

where g(p)  = 2p e-P sinp + 6 e-P cosp + 4 e-p sin p + e-2p+ 3p -?, (4.11 b) 

with V defined by (4.4), and a dot denotes differentiation with respect to u.  It is well 
known, see for example Riley (1967), that vorticity created in this inner shear-wave 
layer, by the action of the Reynolds stresses on the right-hand side of (4.9), diffuses 
beyond it, and this leads to the boundedness condition on the velocity. 

With Yo, yls) determined we now take the outer expansion of the inner solution (4.6) 
which, written in outer variables, is 

- V(1 -i) it 
h, V(u-uo)eit-e- e + 6~P?(u- u,) + S. 

1/2R:l2 
(4.12) 

We note that the first term of (4.12) matches with @, in (4.3), and that the contribution 
S contains terms O{e(u- u,) e"} which will match with the outer solution $?I, as we 
shall see, and terms O ( E ~ ~ ~ ' ~ ) .  Both of these contributions to S feature in the outer 
expansion of PT) which we do not require explicitly. 

We return now to the outer solution where our main aim is to derive information 
about the steady streaming, as represented by $c/i8) in (4.2). Introducing (4.2) into (2.2) 
we have, from the terms of O(E), 

since V2$, = 2 eit . We infer from (4.13) that 

V"?' = 0, 

(4.13) 

(4.14a) 

8 (4.14b) with, from (4.12), $?) = -R-1/2 rei(t-n/') on = u, 

and $?) bounded as u+m. (4.14~) 

The solution of (4.14) for $?) may be written as 

where a, = -21 Vcosnudu. 
x 

(4.15 a) 

(4.15b) 

The inner expansion of $?) provides the matching condition for the term 
O{e(u-uo)eit} of S in (4.12). Consider next the terms O(2)  in (2.2) which yield 

from which we deduce, using (4.3), that 

(4.16) 

a 
au 

+ sin 2 4  1 - e-2(u-uo)) - (V2@c/i8))} sin t + q52(u, u), (4.17) 
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FIGURE 1.  The velocity of slip at the edge of the shear-wave layer for various values of u,,, or b/a .  

where both $.I“) and $z are unknown at this stage. Finally we consider the terms of 
O(E~) of (2.2), from which we have 

(4.18) 

The left-hand side of (4.18) is independent of t ,  but both terms on the right-hand side 
are time dependent, the second by virtue of (4.3) and (4.17). As a consequence the 
equation satisfied by $y )  is 

(4.19~) 

with 

from the matching condition (4.12), and 

= 0, a$y)/au = 6 9 V  on u = U, (4.19b) 

a$y)/au+o as u-200. (4.19~) 

We see now that the steady streaming in the outer region is governed by the full 
Navier-Stokes equations in which the parameter R,  plays the role of the Reynolds 
number. 

Before we discuss the-solution of (4.19) we comment on the velocity of ‘slip’ Us = 
- a$y/aul,=,o = - 6 99 that drives the steady streaming outside the shear layer. We 
present this quantity in figure 1 for various values of u,, or b/a .  This figure shows that 
the ends of the major axis, u = 0, n, are points of attachment of the outer flow from 
which it develops symmetrically up to the ends of the minor axis, v = in, fn, where the 
velocity again is zero. These may be interpreted as stagnation points of separation. Our 
discussion of the initial flow development in #2  is consistent with this picture of the 
flow. Indeed we see how the Navier-Stokes calculations of S. C. R. Dennis (private 
communication) link our initial and quasi-periodic analyses. His numerical results 
show an initial breakaway of the flow close to, but not at, u = in, fn as do our 
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boundary-layer calculations for e 4 1. In the subsequent flow development the flow 
becomes symmetrically disposed about the ellipse with jet-like structures emerging 
along the minor axis from v = in, gn for Re % 1. We concentrate now on solutions of 
(4.19) for which the streaming Reynolds number R, B 1. As Lighthill (1978) has 
remarked it is only in this limit that worthwhile streaming motions are observed. 

For R, $= 1 the outer steady streaming, determined from (4.19), is itself of a 
boundary-layer character. The thickness of this outer layer is O(R;'12), which we note 
is greater than that of the inner, shear-wave, layer by a factor O(e-'). In this outer 
boundary layer we write 

$?) = R-112 $?), u--uo = Rill2 11. 8 

When these variables are introduced into (4.19) and terms of relative order Rill2, and 
smaller, are ignored the resulting equation may be integrated once to give 

(4.20) 

If, further, we write 
t =  U, r] = h,G, 

and 

(4.21 a) 

(4.21 b) 

we recover the familiar two-dimensional boundary-layer equations for the outer steady 
streaming velocity (u8, us), namely 

(4.22 a) 

(4.22b) 

V d P  v 8 = 0 ,  u s =  U 8 = - 6 - -  on r ]  = 0 ,  u8+0 as r]+oo. (4.22~) with 

We have integrated equations (4.22) in the direction of t increasing from the stagnation 
point of attachment t = 0 to t = :n. From symmetry considerations the solution at all 
other values of 5 is readily inferred. The numerical technique is a standard fully implicit 
finite-difference method, as described in detail by Davidson & Riley (1972). All 
derivatives are represented by central differences, and a quasi-linearization technique 
is employed. At each step in the &direction the equations are solved iteratively until the 
non-linear system is satisfied within a prescribed tolerance. In implementing this 
procedure we have taken Sc = n/lOO, Sr] = 0.005. As increases, the boundary layer 
increases in thickness, and we have applied the outer boundary condition at r ]  = qrn 
where qco increases, as v increases, in the range 10 < qrn < 20. An important parameter 
is the momentum flux M in the boundary layer, defined as 

ho d5 

M(5> = 1; (u8)2dr]. (4.23) 

We see from figure 1 that as uo, or b/a,  decreases we expect M to increase, whilst as 
uo+oo, and the ellipse becomes near-circular, we shall find that M + 0 .  We show, in 
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FIGURE 2. The momentum flux M(u) in the outer boundary layer for various values of uo, or b/a .  

figure 2, the distribution of M(s) for 0 < 6 < in corresponding to the 'slip' velocities 
shown in figure 1. As anticipated M(s) increases as uo decreases, in particular at 
5 = in. The boundary layer from 6 = n develops in a similar manner, leading to an 
inevitable collision of these boundary layers at E = tn. The outcome of such a collision 
is a jet that emerges along the minor axis with, by symmetry, a similar jet emerging 
from E = in. The strength of the jet, comparable to M(in), increases as uo, or b/a,  
decreases. These jets are also a feature of the Navier-Stokes calculations of S. C. R. 
Dennis (private communication). This situation may be compared with that in which 
the elliptic cylinder performs translational vibrations, Davidson & Riley (1 972). When 
the axis of oscillation is parallel to either the major or minor axis jets emerge, 
symmetrically, along the oscillation axis. 

4.2. Asymmetric flow 
In $4.1 above we have studied a flow with symmetry about both the major and minor 
axes of the ellipse when the axis of oscillation or pivot lies along the centre of the 
cylinder. We now consider the modifications to the flow when the pivot is placed on 
either the major or minor axis of the ellipse. 

(i) Pivot on major axis 

u = n. Our governing equations are as before except that we now require 
Suppose the pivot is located a distance 1 = l'/d from the centre of the ellipse along 

$ - {e-2U0 (cosh 2u + cos 2u) + 21e-"o (cosh u cos u cos a + sinh u sin u sin a)) eit, (4.24) 

as u +a, where a is the angular displacement of the ellipse. With a = B sin t (4.24) may 
be written as 

$ - {e-2U~(cosh2u+cos2u)+21e-"~coshucosu}e't -iisle-"osinhusinue2't+ O(2).  
(4.25) 
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FIGURE 3. The velocity of slip at the edge of the shear-wave layer for an ellipse with b/a = 0.5 
and the oscillation axis at various values, I / a ,  along the semi-major axis u = z. 

We again expand the outer solution $ as in (4.2) where now the leading term, which 
behaves like the leading term of (4.25) rather than (4.lb) as u+co, is 

$, = [e-'"o (cosh 224- cosh 224, + (1 - e-2(u-uo)) cos 2u} 

+ 21 e-"o cos u (cosh u - e-("-"o) cosh u,}] eit. 

The corresponding velocity of slip at u = u, gives 

V(u) = {e-"o (sinh 2u, + cos 2u) + 1 eUOcos u} (sinh' u, + sin' u)-'/'. (4.26) 

The inner solution is also developed as in (4.6) and Yo, Yf) are as in (4.8), (4.1 1) with 
Pgiven by (4.26). Returning to the outer solution at O(E), and first to +?), we see that 
there is a term as before, forced by the outflow from the Stokes layer, given by (4.15) 
with 7 as in (4.26). Call this original contribution $.:",). There is an additional 
contribution say +g), at this order which satisfies, from (4.13), 

V2$l",'=0 with +g)=O on u = u ,  (4.27 a)  

and, from (4.25), as u+co 

$g) - - ile-"osinh u sin u enit. (4.27 b)  

The solution of (4.27) for $g) is 
$k) = - il e+o (sinh u - e-("-"o) sinh u,) sin v e2it, (4.28) 

and the complete time-dependent part of the solution at O(E) is $?) = $$) + $.:",). At 
O(a2) we again have (4.16), from which V2$, is given by an expression of the form 
(4.17) where only the detail of the coefficient of the term O(sint) changes. The 
subsequent arguments which lead to the problem for +?) are unchanged. In particular, 
for R, %- 1, the problem for the outer steady streaming reduces to the solution of (4.22) 
where now 7 is given by (4.26). 

The slip velocity Us at the outer edge of the Stokes layer, which drives the outer 
steady streaming, is shown in figure 3. These results are for a single ellipse with u, = 
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FIGURE 4. The momentum flux M(u) in the outer boundary layer from (a) u = 0 and (b) u = 8, for 
the slip velocities shown in figure 3. 

0.5493 which corresponds to b/a  = 0.5, and are plotted for various values of Y/a, up 
to the end of the major axis. We note that for these eccentric oscillations we can expect 
a much stronger flow to originate at the stagnation point of attachment u = 0 than at 
the corresponding point u = A. It is not immediately apparent from this figure, but in 
some cases U, changes sign more than once in 0 < u < A, but always in a region in 
which lU,l 4 1. We have integrated (4.22) numerically, as described in $4.1, from 
u = 0 in the direction of u increasing, and from u = A in the direction of u decreasing. 
In each case we have terminated the calculation at the first point for which U, = 0. The 
results for the momentum flux are shown, respectively, in figures 4(a) and (b). In all of 
the cases shown the momentum flux from the point of attachment u = 0 exceeds that 
from the point u = A by a factor O(10). We may infer, therefore, that the steady 
streaming from u = 0 overwhelms that from u = A and that there is a net steady flow, 
superimposed on the basic fluctuating flow, along the direction of the semi-major axis 
u = A. This is consistent with the flow due to an eccentrically oscillating circular 
cylinder discussed by Riley & Watson (1 993), and visualized experimentally by Taneda 
(1980). Of course, as the pivot moves out further along the major axis with I' > a 
there will be yet another change in the character of the acoustic streaming, because, 
for I' 9 a, and with €1 < 1, the situation will become one in which the cylinder is 
effectively performing transuerse oscillations in the direction of its minor axis. In that 
case, as Davidson & Riley (1972) have demonstrated, the streaming manifests itself as 
jet-like flows along u = +in. 

In summary we have the following sequence of events, all of which exhibit symmetry 
about the major axis of the ellipse. For the case in which the pivot is at the centre of 
the ellipse the streaming manifests itself as jet-like flows emerging along the semi-minor 
axes u = &$A. As the pivot is moved along the major axis a point is reached, before 
I' = a, at which the streaming is predicted to be unidirectional along the semi-major axis 
u = 71. But as the pivot is moved further in that direction the streaming finally reverts 
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FIGURE 5. The velocity of slip at the edge of the shear-wave layer for an ellipse with b/a = 0.5 
and the oscillation axis at various values, I / b ,  along the semi-minor axis v = :IF. 

to its original configuration with streaming again along u = &$. Such an unexpected 
sequence of events was unsuspected a priori. 

(ii) Pivot on minor axis 

centre of the ellipse along the semi-minor axis u = tn. 

we now require, as u+m, 

or, with a = e sin t ,  

We now consider the case when the pivot is located at a distance 1 = l'/d from the 

Our development of the solution closely mirrors that for case (i). In place of (4.24) 

$ - {e-'"o (cosh 2u + cos 2u) + 21 e-"o (sinh u sin u cos a -cosh u cos v sin a)} eit, (4.29) 

$ - {eP2"o (cosh 2u + cos 2u) + 21e-"o sinh u sin u}  eit + iel e-"o cosh u cos u eait + O(e2). 

The leading term of the expansion (4.2) is now given by 
(4.30) 

$, = [e-'"o {cosh 2u - cosh 224, + (1 - e-2(u-uo)) cos 2u} 
+ 21 e-"o {(sinh u - e-("-"o) sinh u,) sin u}] eit. 

The corresponding velocity of slip at u = u, now gives 

V(u) = (e-"o (sinh 224, + cos 2u) + 1 e'o sin v} (sinha u, + sin2 u ) - ' / ~ .  (4.3 1) 

For the inner solution Yo and F:) are again unchanged, except that now Pis  given by 
(4.31). For the outer solution at O(e), $g) is affected only by the change in Pwhilst $:) 
satisfies (4.27) but with the outer boundary condition replaced, from (4.30), by 

$-kc,' - iIe-"ocoshucosueait as u+m, 

so that $g) = ile-". (cosh u - e-("-"O) cosh u,) cos u eZit. (4.32) 

The outer steady streaming, using exactly the same arguments as before, satisfies (4.19) 
or, in the high-Reynolds-number limit (4.22) with V defined in (4.31). 

The slip velocity U8 at the outer edge of the Stokes layer that drives the outer 
streaming is shown in figure 5. The results shown are again for a single ellipse with 
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SO 

FIGURE 6. Points of attachment and separation on the ellipse. 

u, = 0.5493 or b/a = 0.5, and are given for various values of Y/b up to the end of the 
minor axis. 

Before we comment in detail on this case we note the following. As the pivot moves 
out along the minor axis, and beyond Y = b to a sufficiently great distance, the motion 
of the cylinder is effectively that of transverse oscillations along the major axis. We 
know from Davidson & Riley (1972) that for such a situation the steady streaming is 
jet-like along the major axis. So, with the pivot at the centre the jets are directed along 
u = k i ~ ,  but for 1 %  1 we may expect them to be aligned along t, = 0, x .  We consider 
how ths  transformation takes place. 

Consider the slip velocity Us in figure 5, in relation to figure 6. There is symmetry, 
clearly, about the minor axis. The point So, which is a point of separation when the 
pivot point P is at the ellipse centre 0 remains a point of separation. The points A,, 
A; will be stagnation points of attachment, originally at u = 0, R when 1 = 0, with the 
arclength A, So decreasing as 1 increases. At u = :R we have a point of attachment A,. 
This point, we recall, is a point of separation in the symmetric case, when 0 and P 
coincide, with a jet emerging from it. S,, Si are points at which Us = 0. These are not 
points of separation from which jets emerge, as we see from momentum flux arguments 
below, but such points will be close to them. Our prediction is, then, that the jet 
originally emerging from u = $x when I = 0 bifurcates into two emergent jets, with a 
third jet originating at u = in. As 1 increases, and the pivot point extends beyond the 
edge of the semi-minor axis u = :R, the points A,, A; converge upon So until that point 
is one of attachment; and S,, S; move towards the ends of the major axis until we have 
the limiting situation with jets emerging along u = 0, R as appropriate to what are then 
effectively transverse vibrations parallel to the major axis. To illustrate these features 
further we again consider the momentum flux in the boundary layers. First, in figure 
7(a )  we have the momentum flux as a function of u between attachment A, and So. As 
l'/b increases, so the sector A, So decreases, as does the terminal momentum flux. This 
implies an ever-weakening jet emergent from So as l'/b increases. Next, in figure 7(b) 
we show the momentum flux in the sector A, S,. This increases as I'/b increases, as does 
the momentum flux along A,S, shown in figure 7(c). The latter increases more 
dramatically. As l'/b increases indefinitely the terminal momentum fluxes in sectors 
A, S ,  and A, S ,  will tend to the same value. In figures 7 (b) and 7 (c) we see an imbalance 
of momentum flux as the point S,, at which Us = 0, is approached. A consequence of 
this is that, just as in case (i), we may not expect the point of separation to be at S,, 
but in this case to be displaced towards A,. Only when Y/b is substantial may we 
anticipate the emergence of jets that are clearly distinguishable one from the other. 
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5. Experiments 
The steady streaming flows we have discussed in $4 are both unexpected and vaned. 

This fact has stimulated us to construct a simple experiment in order to verify the 
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FIGURE 8. A schematic diagram of the experiment. 

predictions we have made. This is shown in plan form in figure 8. The working fluid 
is water with kinematic viscosity u = 0.01 cm2 s-’ at room temperature. It is contained 
in a rectangular tank constructed from Perspex acrylic of dimensions 30 cm in depth, 
and 45 cm x 45 cm in plan. A lid seals the tank and prevents any unwanted free-surface 
effects. Relief holes at each comer allow air bubbles, that form beneath the lid, to be 
withdrawn. The elliptic cylinder itself, E, is constructed from ‘Delrin’, measures 30 cm 
in length and 4 cm x 2 cm in cross-section, and is mounted vertically in the tank. Pivot 
points pt(i = 0, 1 ,  2) are located at the centre, and along the major and minor axes of 
the ellipse respectively. The upper pivot penetrates the lid, and to it is attached a 
horizontal arm. This in turn is attached, via a simple linkage L, to the horizontal arm 
of a small vibrator V clamped to the edge of the tank. For flow visualization purposes 
the fluid was seeded with ‘Dantec’ pearlescent material. Illumination was provided by 
two standard slide projectors, which were arranged to give a sheet of light of 
approximately 1 cm in thickness at the mid-plane. The amplitude and frequency of the 
vibrations could be varied. However, for the flows visualized in figure 9 these were fixed 
at an angular amplitude of B = 0.25 and frequency w = 4 Hz. The corresponding 
streaming Reynolds number R, = 352. The visualized results shown in figure 9 were 
obtained with a Pentax ME Super 35 mm camera using Ilford FP4 film, mounted 
about 1 m above the tank. Exposure times were 1 s at f3.5 for figure 9(a) and 2 s at f4 
for the remaining illustrations of figure 9. 

Consider first figure 9 (a). In this particular example the pivot is at position P, close 
to the end of the semi-minor axis, and we see the onset of a jet erupting from the end 
of that axis. This is typical of the onset of a jet flow, characterized by the appearance 
of a vortex pair, and was clearly observed in all the experiments with symmetry about 
the minor axis. Our analysis of $ 3  does not go beyond predicting the breakdown of the 
boundary-layer solution. Moreover, even when the quasi-periodic flow has symmetry 
about u = Lin the breakdown predicted in $3 is not at these points, nor is it in the 
Navier-Stokes calculations of S. C. R. Dennis. However, we have not been able to 
detect, by eye, an eruption from the boundary layer, in these cases, other than at u = 
*in. We may conclude that the breakdown, or separation, point moves very rapidly 
to give the symmetric eruption shown in figure 9(a). This is certainly consistent with 
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the Navier-Stokes calculations. In figure 9(b), where as in 9(a)  the mean position of 
the ellipse is shown, the pivot is at the centre Po and the flow is symmetrical about both 
the major and minor axes. The flow within a few centimetres from the ellipse has 
evolved to its quasi-periodic state. The jet-like steady streaming has developed along 
the direction of the minor axis exactly as we have predicted. Entrainment into the jet, 
and also into the boundary layers at the ellipse that feed it, are clearly seen. The pivot 
for the example shown in figure 9(c)  is now placed halfway along the semi-major axis 
u = R. The theoretical prediction from 94 indicates that a boundary layer develops 
from the stagnation point at u = 0 which is much stronger in terms of its momentum 
flux than the boundary layer originating from the stagnation point at u = R .  The 
former may, therefore, be expected to overwhelm the latter following the inevitable 
collision between them. This is seen to be the case with the collision resulting in a 
separation from the surface of the jet-like flows from u z +$, approximately parallel 
to the major axis. In this case the steady streaming flow is unstable and the net result 
is a broad, right to left in figure 9(c) ,  net flow exactly as predicted. Again there is 
entrainment into the boundary layers at the ellipse. The initiation of the flow shown 
in figure 9 (c)  has features in common with figure 9 (a). Now, however, as the boundary 
layers collide, and the flow erupts from the surface, each vortex pair is dominated by 
the stronger flow. The resulting structure, from each eruption point, has the 
appearance of a single vortex and these move out along lines t, z kin. The final 
configuration, shown in figure 9(d,  e) ,  has the pivot close to the end of the semi-minor 
axis, shown as P, in figure 8. In figure 9 ( d )  we see a jet-like structure emerging from 
the stagnation point at the end of the semi-minor axis furthest from the pivot. This is 
similar to that shown in figure 9(b), where the pivot is centrally placed, as expected 
from the analysis of $4. Finally, in figure 9(e) ,  the jet emerges from the stagnation point 
close to the pivot. Recall, from $4, that the jet emerging from this stagnation point in 
the case when the pivot is at Po bifurcates as the pivot is moved towards it along the 
semi-minor axis. Ultimately, we have argued, as the pivot moves off the ellipse in this 
direction the two parts of the bifurcated jet continue to separate until they are aligned 
with the major axis. In figure 9(e), see also figure 9(a) ,  we see clearly the bifurcation 
of the jet. Since the two parts into which the jet has divided emerge in a direction 
towards the minor axis, as may be expected from the momentum fluxes in the 
boundary layers from which they are formed, they merge in this case into a single jet 
that moves out along the minor axis. 

For the experiments described above e and w were not varied. However, our 
discussion in $3 shows that as the oscillation amplitude decreases the time of 
breakdown of the boundary-layer solution, from the onset of the flow, and hence the 
establishment of a quasi-periodic flow, increases. We have tested this in our experiment 
by varying e with w fixed at 4Hz. The time t: at which the flow erupts from the 
boundary layer was estimated, by eye, from the h s t  appearance of the vortex pair 
shown in figure 9(a) .  The results, which are for the pivot at Po, are shown in table 2 
where the streaming Reynolds number R, is also shown. Although the results are not 
directly comparable with those in table 1, for which the parameter R, is effectively 
infinite, the trend, as e decreases, of t ,  increasing, is evident. 

We conclude that the experiments described in this section provide striking evidence 
in support of the theoretical predictions made in $4 for the unusual and unexpected 
time-averaged flows associated with the torsional oscillations of an ellipse. 

The authors are indebted to Dr Chris Retzler of City University for help and advice 
on flow visualization. M. F. W. is indebted to SERC for support in the form of an 
earmarked studentship. 
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FIGURE ~(cFc). For caption see facing page. 
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(4 

FIGURE 9. (a) An example of jet initiation; (b) The jet along the semi-minor axis with the pivot at Po; 
(c) The steady streaming induced when the pivot is placed at PI, halfway along the semi-major axis 
v = R ;  (d) The jet along the semi-minor axis v = :R when the pivot is at P,, close to the end of the 
semi-minor axis v = :IT. (e) As (d) but showing the jet along the semi-minor axis v = $R. 

t: (4 R, 
0.25 3.2 352 
0.24 3.6 324 
0.23 4.6 298 
0.22 4.4 212 
0.20 5.3 225 
0.18 6.3 182 
0.14 8.0 110 
0.13 12.4 95 

TABLE 2. 
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